с высокой степенью вероятности или с менее высокой.

Здравомыслящие люди могут использовать эти данные у себя на работе или в повседневной жизни. Например, когда вы слышите по радио сообщение о том, что на Землю падает очередной спутник, вовсе не обязательно мчаться домой на мотоцикле, чтобы предупредить семью.

Когда речь заходит о риске, наши страхи не всегда бывают адекватны тому, что говорят нам числа о реальной опасности, которой мы подвергаемся, то есть о том, чего нам действительно следует бояться. Один из поразительных выводов сделали Стивен Левитт и Стивен Дабнер, авторы книги «Фрикономика»[22] (Freakonomics), заявив, что плавательный бассейн во дворе вашего дома гораздо опаснее, чем заряженный револьвер, хранящийся у вас в шкафу{32}. Левитт и Дабнер подсчитали: вероятность того, что ребенок в возрасте до десяти лет утонет в плавательном бассейне, в сто раз превышает вероятность того, что он случайно застрелится, играя с вашим револьвером (если, конечно, найдет его в шкафу)[23]. В интересной статье трех исследователей из Корнелльского университета – Гаррика Блалока, Вринды Кадияли и Дэниела Саймона – сообщается о том, что тысячи американцев, возможно, умерли после теракта 11 сентября из-за страха летать самолетами{33}. Мы никогда не узнаем подлинных рисков, связанных с терроризмом; однако нам доподлинно известно, что вождение автомобиля – опасное занятие. Когда после теракта 11 сентября американцы решили больше ездить наземным транспортом, чем летать, ежемесячное количество дорожно-транспортных происшествий в октябре, ноябре и декабре 2001 года, согласно оценкам авторов данного исследования, увеличилось на 344 случая (с учетом среднего количества погибших и факторов, которые обычно способствуют ДТП, например погодных условий). Со временем – предположительно в результате уменьшения боязни терроризма – этот эффект сам по себе сошел на нет, но, по оценкам исследователей, теракты 11 сентября как таковые привели к более чем 2000 дорожно-транспортных происшествий со смертельным исходом.

Иногда вероятность может также говорить нам постфактум, что, по-видимому, произошло и что, по-видимому, не произошло – как в случае с анализом ДНК. Когда эксперты в телесериале CSI: Miami находят следы слюны на огрызке яблока рядом с жертвой преступления, в этой слюне нельзя обнаружить имя убийцы, даже если ее рассматривает через мощный микроскоп очень симпатичная девушка-эксперт. Однако эта слюна (или волос, или кусочек кожи или кости) содержит сегмент ДНК, в котором, в свою очередь, есть участки (локусы), специфические для каждого человека (за исключением однояйцовых близнецов, имеющих одну и ту же ДНК). Когда медэксперт заключает, что у некоего образца ДНК выявлено совпадение, это лишь часть того, что предстоит доказать следствию. Да, определенные локусы на образце ДНК, взятом с места преступления, должны совпадать с соответствующими локусами на образце ДНК, взятом у подозреваемого. Тем не менее следователям также предстоит доказать, что такое совпадение неслучайно.

ДНК у разных людей бывают похожи, как и многие другие характеристики: размер обуви, рост, цвет глаз. (Свыше 99 % ДНК у людей идентичны.) Если в распоряжении исследователей есть только малый образец ДНК, на котором можно проверить лишь пару-тройку участков, то вполне возможно, что у тысяч или даже миллионов людей окажется точно такой же генетический фрагмент. Следовательно, чем большее число локусов будет проверено и чем большее естественное генетическое отклонение будет в каждом из них обнаружено, тем определеннее окажется совпадение. Можно сказать и по-другому: тем меньше вероятность того, что данный образец ДНК совпадет с несколькими людьми{34}.

Чтобы лучше уяснить ситуацию с ДНК, представьте, что ваше «число ДНК» состоит из вашего телефонного номера, присоединенного к номеру вашей карточки социального страхования. Эта последовательность из девятнадцати цифр идентифицирует вас уникальным образом. Допустим, что каждая такая цифра представляет собой «участок» с десятью возможностями: 0, 1, 2, 3 и т. д. Предположим также, что следователи обнаружили на месте преступления остаток некоего «числа ДНК»: _ _ 4 5 9 _ _ _ 4 _ 0 _ 9 8 1 7 _ _ _. Оказалось, что этот фрагмент в точности совпадает с вашим «числом ДНК». Итак, вы – преступник?

Следует обратить внимание на три вещи. Во-первых, все, что меньше чем полное совпадение с полным геномом, оставляет некоторый простор для неопределенности. Во-вторых, чем больше локусов, которые мы можем проверить, тем меньше неопределенность. И в-третьих, важен контекст. Выявленное совпадение было бы чрезвычайно убедительным, если бы нашлись свидетели того, как вы пытались скрыться с места преступления, или если бы у вас в кармане обнаружили кредитную карточку жертвы.

Когда следователи располагают неограниченным временем и ресурсами, типичный процесс включает в себя проверку тринадцати разных локусов. Шансы, что профиль ДНК у двух разных человек совпадает по всем тринадцати локусам, чрезвычайно малы. Когда для идентификации останков, найденных во Всемирном торговом центре после терактов 11 сентября, использовался анализ ДНК, образцы, обнаруженные на месте трагедии, сравнивались с образцами, предоставленными членами семей жертв теракта. Вероятность, требовавшаяся для позитивной идентификации, равнялась один из миллиарда; то есть вероятность того, что останки принадлежат кому-то другому, а не идентифицируемой жертве, не превышает одного шанса из миллиарда. Впоследствии, по мере того как оставалось все меньше и меньше неидентифицированных жертв, с которыми могли бы быть спутаны останки, этот стандарт был ослаблен.

Если ресурсы ограниченны или имеющийся образец ДНК слишком мал или загрязнен, чтобы можно было проверить тринадцать локусов, ситуация становится более запутанной и спорной. В 2008 году газета Los Angeles Times опубликовала серию материалов, посвященных использованию ДНК при расследовании преступлений{35}. В частности, издание задалось вопросом, не недооценена ли возможность случайных совпадений при использовании стандарта вероятности, определяемого законом. (Поскольку профиль ДНК всего населения не знает никто, то вероятности, на которые ссылаются в суде ФБР и другие правоохранительные органы, носят лишь оценочный характер.) Весьма неоднозначную реакцию в обществе вызвала информация о том, что эксперт-криминалист из Аризоны, выполнявший тесты на основе базы данных ДНК этого штата, обнаружил совпадение ДНК на девяти локусах у двух опасных уголовных преступников, не являющихся родственниками; между тем, согласно ФБР, вероятность такого совпадения равна одному шансу из 113 миллиардов. Дальнейший поиск в других базах данных ДНК позволил выявить свыше тысячи пар людей с генетическими совпадениями на девяти и более локусах. Это может служить серьезным поводом к размышлению для правоохранительных органов и адвокатов. Пока же важный для нас урок заключается в том, что анализ ДНК, на который возлагаются столь большие надежды, хорош лишь настолько, насколько надежны значения вероятности, подкрепляющие его.

Зачастую бывает очень полезно знать вероятность одновременного наступления нескольких событий. Какова вероятность исчезновения электричества в сети и выхода из строя автономного генератора? Вероятность одновременного наступления двух независимых событий представляет собой произведение их соответствующих вероятностей. Другими словами, вероятность наступления события A и события B равна вероятности наступления события A, умноженной на вероятность наступления события B. Чтобы вам стало понятнее, приведу соответствующий пример. Если вероятность выпадания орла при однократном подбрасывании монетки составляет ½, то вероятность его выпадания при подбрасывании такой же монетки два раза подряд равняется ½ ? ½ = ¼; три раза подряд – ⅛; четыре раза подряд – 1/16 и т. д. (Понятно, что вероятность выпадания решки при подбрасывании монетки четыре раза подряд также составляет 1/16.) Это объясняет, почему системный администратор в вашем учебном заведении или офисе постоянно напоминает вам о необходимости усложнить пароль. Если вы используете шестизначный пароль, состоящий только из цифр, мы можем подсчитать количество возможных паролей: 10 ? 10 ? 10 ? 10 ? 10 ? 10, что равняется 106, или 1 000 000. На первый взгляд, количество комбинаций настолько велико, что угадать пароль сложно, однако компьютер проверит все эти 1 000 000 вариантов за какую-то долю секунды.

Допустим, системный администратор убеждает вас включить в пароль буквы. На данном этапе для каждого из шести разрядов имеется 36 комбинаций: 26 букв английского алфавита и 10 цифр. Итак, количество возможных паролей возрастает до 36 ? 36 ? 36 ? 36 ? 36 ? 36, или 366, то есть свыше двух миллиардов. Если ваш системный администратор требует, чтобы пароль состоял из восьми цифр, и призывает использовать символы #, @, % и! как в Чикагском университете, то количество потенциальных паролей увеличивается до 468, то есть свыше 20 триллионов.

Здесь нужно сделать одно важное замечание. Эта формула применима только если события независимы; иными словами, когда исход одного события не оказывает влияния на исход другого события. Например, вероятность того, что в результате первого подбрасывания монетки выпадет орел, не влияет на вероятность исхода второго подбрасывания той же монетки. С другой стороны, вероятность того, что сегодня пойдет дождь, не независима от того, был ли он вчера, поскольку грозовые фронты могут сохраняться на протяжении нескольких дней. Аналогично, вероятность того, что сегодня ваш автомобиль попадет в аварию, и того, что он попадет в нее в следующем году, также не независимы друг от друга. То, что привело к аварии вашего автомобиля в этом году, может спровоцировать ДТП и в следующем году: возможно, вы склонны садиться за руль в нетрезвом состоянии, или вам нравится устраивать гонки на дороге, или строчить эсэмэски во время вождения; наконец, не исключено, что вы просто плохой водитель. (Именно поэтому после каждого очередного ДТП ваша страховая ставка повышается; дело не столько в желании страховой компании компенсировать деньги, выплаченные ею согласно страховому договору, сколько в том, что теперь она располагает новой информацией о вероятности вашего попадания в дорожно-транспортные происшествия в дальнейшем, поскольку – после того как вы, заезжая в гараж, сильно поцарапали свой автомобиль – такая вероятность повысилась.)

Допустим, вас интересует вероятность наступления одного (исхода A) или другого (исхода B) события (опять же предполагая, что они независимы). В этом случае вероятность наступления события A или B равна сумме их индивидуальных вероятностей, то есть вероятность A плюс вероятность B. Например, вероятность выпадания 1, 2 или 3 в результате подбрасывания одной игральной кости равняется сумме их отдельных вероятностей: 1/6 + 1/6 + 1/6 = 3/6 = ½. Это должно быть интуитивно понятно. При подбрасывании игральной кости есть шесть возможных исходов. Числа 1, 2 и 3 в совокупности составляют половину из них. Следовательно, вероятность выпадания 1, 2 или 3 вследствие подбрасывания одной игральной кости равняется 50 %. Если вы играете в кости в Лас-Вегасе, то вероятность выпадания 7 или 11 в результате однократного подбрасывания равна количеству комбинаций, составляющих в сумме 7 или 11, поделенному на общее число вариантов, которые могут выпасть в результате подбрасывания двух игральных костей, или 8/36[24].

Вероятность также позволяет подсчитать математическое ожидание – чрезвычайно полезный инструмент, используемый при принятии любых управленческих решений, особенно в сфере финансов. Математическое ожидание – это среднее значение случайной величины. Математическое ожидание, или отдача (функция выигрыша) от некоторого события, например покупки лотерейного билета, представляет собой сумму всех разных исходов, весовыми коэффициентами при каждом из которых являются вероятность исхода и выигрыш. Как обычно, приведем пример, чтобы прояснить смысл сказанного. Допустим, вам предложили сыграть в кости, причем подбрасывается только одна игральная кость. Функция выигрыша в этой игре такова: 1 доллар, если у вас выпадает 1; 2 доллара, если у вас выпадает 2; 3 доллара, если у вас выпадает 3 и т. д. Каково математическое ожидание в случае однократного подбрасывания игральной кости? Вероятность каждого из возможных исходов равняется 1/6, поэтому математическое ожидание вычисляется так:

⅙ ($1) + ⅙ ($2) + ⅙ ($3) + ⅙ ($4) + ⅙ ($5) + ⅙ ($6) = 21/6, или $3,50.

На первый взгляд, математическое ожидание 3,50 доллара кажется относительно бесполезной величиной. В конце концов, вы не можете фактически заработать 3,50 доллара в результате однократного подбрасывания игральной кости (так как ваш доход в любом случае должен равняться целому числу). На самом деле математическое ожидание представляет собой чрезвычайно мощный инструмент, поскольку он может сказать вам, является ли то или иное событие «справедливым», учитывая его цену и ожидаемый исход. Допустим, вам предлагают поучаствовать в описанной выше игре при ставке 3 доллара за каждое подбрасывание игральной кости. Имеет ли смысл соглашаться на такие условия? Да, поскольку математическое ожидание исхода (3,50 доллара) выше, чем стоимость игры (3,00 доллара). Это не означает, что вы обязательно заработаете деньги в результате однократного подбрасывания игральной кости, но помогает уяснить, на какой риск стоит пойти, а на какой – нет.

Этот гипотетический пример можно применить к профессиональному американскому футболу. Как указывалось ранее, после тачдауна команда может либо пробить и заработать дополнительное очко, либо попытаться выполнить двухочковую конверсию. Первый вариант предполагает такой удар по мячу с трехъярдовой линии, в результате которого мяч должен пройти между стойками ворот; второй вариант предполагает пробежку или передачу мяча в концевую зону с трехъярдовой линии, что значительно труднее. Команда может предпочесть более легкий вариант и заработать одно очко или выбрать более сложный вариант и заработать два очка. Как быть?

Возможно, статистики не играют в футбол и не назначают свиданий девушкам из группы поддержки, но они могут предоставить ценное статистическое руководство футбольным тренерам{36}. Как указывалось ранее, вероятность выполнения удара после тачдауна равняется 0,94. Это означает, что математическое ожидание попытки заработать одно очко после тачдауна также составляет 0,94, поскольку оно равняется «доходу» (1 очко), умноженному на вероятность успеха (0,94). Никакая команда не может заработать 0,94 очка, но эта величина помогает оценить данный вариант действий после тачдауна в сравнении с альтернативным вариантом (двухочковой конверсией).

Математическое ожидание в случает «погони за двумя очками» оказывается гораздо меньшим: 0,74. Да, «доход» выше (2 балла), но вероятность успеха существенно ниже (0,37). Очевидно, если играть осталось совсем немного и для победы команде требуются два очка, то ей не остается ничего другого, как попытать счастья с двухочковой конверсией. Но если цель команды – максимизация количества набранных очков, и она располагает для этого определенным запасом времени, то вариант с зарабатыванием одного очка для нее более приемлем.

Такой же базовый анализ может показать, почему не стоит покупать лотерейные билеты. В Иллинойсе вероятности, связанные с разными возможными выигрышами в лотерее, напечатаны на оборотной стороне каждого билета. Я купил за 1 доллар один билет мгновенной лотереи. (Интересно, облагается ли эта сумма налогом?) На его оборотной стороне напечатаны – микроскопическим шрифтом – шансы выиграть различные денежные призы или получить еще один такой же билет (бесплатно): 1 шанс из 10 (бесплатный лотерейный билет); 1 шанс из 15 (2 доллара); 1 шанс из 42,86 (4 доллара); 1 шанс из 75 (5 долларов) и т. д. вплоть до 1 шанс из 40 000 – 1000 долларов. Я подсчитал ожидаемый доход для моего билета мгновенной лотереи, сложив все возможные варианты выигрыша денежного приза с весовыми коэффициентами, равными вероятности выигрыша каждого из этих денежных призов[25]. Оказалось, что ожидаемый доход для моего однодолларового лотерейного билета – примерно 0,56 доллара[26]. Таким образом, покупка такого билета – абсолютно бездарный способ потратить 1 доллар. Как назло, я выиграл 2 доллара.

Несмотря на мой неожиданный выигрыш, я все равно считаю, что покупка билета мгновенной лотереи – абсолютная глупость. Это один из важнейших уроков теории вероятностей. Хорошие решения – если их оценивать вероятностями, которые за ними кроются, – в действительности могут оказаться не такими уж хорошими. А плохие решения – например, покупка билета мгновенной лотереи в Иллинойсе – не такими уж плохими, по крайней мере на коротком отрезке времени. Но в конечном счете вероятность все равно торжествует. Важная теорема, известная как закон больших чисел, гласит, что по мере возрастания количества испытаний средний результат исходов все сильнее приближается к его математическому ожиданию. Да, я выиграл 2 доллара, купив сегодня билет мгновенной лотереи. И мог бы еще раз выиграть 2 доллара завтра. Но если я куплю тысячи однодолларовых лотерейных билетов, каждый с ожидаемым доходом 0,56 доллара, то я почти наверняка останусь в проигрыше. К тому времени, когда я потрачу на покупку лотерейных билетов один миллион долларов, мой выигрыш составит сумму, очень близкую к 560 000 долларов.

Закон больших чисел объясняет, почему в долгосрочном периоде казино всегда выигрывают. Вероятности, связанные со всеми играми, которые практикуются в казино, благоприятствуют последнему (при условии, что казино способно помешать игрокам в блек-джек вычислять карты). Если в течение довольно продолжительного отрезка времени было сделано достаточное количество ставок, то казино обязательно получит больше, чем потеряет. Закон больших чисел также объясняет, почему вероятность того, что компания Joseph Schlitz Brewing Company добьется нужного ей результата, повышается при выполнении 100 слепых дегустаций, а не десяти. Взгляните на «функции плотности вероятности» для 10, 100 и 1000 слепых дегустаций пива. (Несмотря на свое мудреное название, функция плотности вероятности просто отображает упорядоченные исходы вдоль оси x и ожидаемую вероятность каждого исхода вдоль оси y; в сумме эти вероятности дают 1.) Как и ранее, я предполагаю, что каждая дегустация эквивалентна подбрасыванию монетки, а каждый дегустатор выбирает пиво Schlitz с вероятностью 0,5. Как видно из приведенных ниже графиков, по мере увеличения количества дегустаторов ожидаемый исход все больше сосредоточивается в области выбора пива Schlitz половиной (50 %) дегустаторов. В то же время вероятность получения исхода, который резко бы отклонялся от 50 %, по мере роста числа испытаний резко падает.

Ранее я говорил, что руководство компании Joseph Schlitz Brewing Company было бы радо, если бы в ходе сравнительной слепой дегустации не менее 40 % любителей пива Michelob выбрали пиво Schlitz. Приведенные ниже числа отражают вероятность достижения такого результата по мере увеличения количества дегустаторов:

10 дегустаторов: 0,83

100 дегустаторов: 0,98

1000 дегустаторов: 0,9999999999

1 000 000 дегустаторов: 1

Сейчас интуиция должна подсказать вам смысл, заложенный в подзаголовке этой главы: «Не покупайте расширенную гарантию для своего 99-долларового принтера». Ладно, возможно, пока этот смысл для вас еще неочевиден. Вернемся к одному из предыдущих примеров. Вся страховая отрасль построена на вероятностях. (А гарантийное обязательство – одна из форм страхования.) Когда вы страхуете что-либо, вы заключаете договор на получение определенной компенсации при наступлении четко оговоренных обстоятельств. Например, страховка вашего автомобиля может предусматривать его замену в случае, если он будет украден или врежется в дерево. В обмен на эту гарантию вы соглашаетесь выплачивать определенную сумму за период, на который застраховали свое авто. Основная идея страхования заключается в том, что в обмен на регулярные и предсказуемые выплаты вы переносите на соответствующую страховую компанию риск того, что ваш автомобиль может быть похищен, или попасть в аварию, или даже прийти в полную негодность по причине вашего неумения хорошо водить.

Почему страховые компании готовы взять на себя такие риски? Потому что в долгосрочном периоде они заработают большие прибыли – если, конечно, правильно рассчитают величину своих страховых взносов. Разумеется, какие-то из автомобилей, застрахованных компанией Allstate Corporation, будут украдены. Другие придут в полную негодность, после того как их владельцы наедут, к примеру, на пожарный гидрант, как одна из моих старых приятельниц. (Кроме того, ей пришлось возместить полную стоимость устройства, что, между прочим, оказалось гораздо дороже, чем вы могли подумать.) Однако с большинством автомобилей, застрахованных Allstate Corporation или какой-либо другой компанией, серьезных неприятностей не случится. Чтобы получить прибыль, страховой компании нужно лишь позаботиться о том, чтобы сумма страховых взносов превышала возможные страховые выплаты. А для этого страховая компания должна иметь четкое представление о том, что в страховой отрасли принято называть «ожидаемыми потерями» на каждый страховой полис. Это в точности такая же концепция, что и математическое ожидание, но со «страховым уклоном». Если ваш автомобиль застрахован на 40 000 долларов, а вероятность того, что он будет украден в любом данном году, равняется 1 шансу из 1000, то годовые ожидаемые потери на ваш автомобиль составят 40 долларов. Величина годового страхового взноса для той части страхового покрытия, которая относится к угону автомобиля, должна быть больше 40 долларов. С этого момента страховая компания ничем, по сути, не отличается от казино или мгновенной лотереи в Иллинойсе. Да, иногда ей придется выплачивать определенные суммы по страховым претензиям, но в долгосрочной перспективе поступления обязательно превысят эти выплаты.

Как потребитель, вы должны отдавать себе отчет, что в длительном периоде страховка не сэкономит вам деньги. Единственное, что она может для вас сделать, это предотвратить некоторые неприемлемо высокие убытки, компенсировав, например, потерю угнанного автомобиля стоимостью 40 000 долларов или сгоревшего дома за 350 000 долларов. Покупка страхового полиса с точки зрения статистики – «неудачная ставка», поскольку вы заплатите страховой компании в среднем больше, чем от нее получите. Тем не менее это все же вполне разумный способ защиты от исходов, которые в противном случае могли бы вас просто разорить. По иронии судьбы такие богачи, как Уоррен Баффет, могут сэкономить на страховке автомобиля, жилья или даже здоровья, потому что миллиардеры могут себе позволить практически любые несчастья, которые приключаются с людьми.

И вот тут мы наконец возвращаемся к пресловутому принтеру за 99 долларов. Предположим, вы купили замечательный новый лазерный принтер в какой-либо солидной торговой сети, например в Best Buy[27]. Когда вы подходите к кассовому аппарату, чтобы рассчитаться за покупку, продавец-консультант предлагает вам ряд вариантов продленного срока гарантии. Если вы заплатите дополнительно 25 или 50 долларов, Best Buy починит или заменит ваш принтер в случае его поломки в ближайшие год-два. Зная основы теории вероятностей, страхового дела и экономики, вы должны сразу же сделать следующие выводы: 1) Best Buy – коммерческая организация, которая стремится максимизировать свою прибыль; 2) продавец-консультант пытается навязать вам какой-либо из вариантов продленного срока гарантии; 3) исходя из пунктов 1) и 2) вы можете заключить, что стоимость такой гарантии будет выше, чем ожидаемая стоимость ремонта принтера для Best Buy (если бы это было не так, Best Buy вряд ли столь настойчиво вас бы уговаривала); 4) если ваш принтер за 99 долларов поломается и вам придется платить за его ремонт из собственного кармана, это никаким особым образом не повлияет на вашу жизнь.

В среднем вы заплатите за продление гарантийного срока больше, чем пришлось бы выложить за ремонт принтера. Более универсальный урок – и один из основополагающих в деле личных финансов – заключается в том, что вы всегда должны страховать себя от любых неблагоприятных обстоятельств, которые могут внести существенный дискомфорт в вашу жизнь. Застраховываться от всего остального не имеет смысла.

Математическое ожидание также может помочь в принятии сложных решений, которые обусловливаются многими обстоятельствами в разные моменты времени. Допустим, кто-то из друзей попросил вас инвестировать один миллион долларов в исследовательский проект, связанный с разработкой новейшего средства от облысения. Вы, скорее всего, поинтересуетесь, каковы шансы проекта на успех, и получите весьма неоднозначный ответ. Так как речь идет об исследовательском проекте, вероятность того, что ученым удастся найти эффективное средство от облысения, составляет лишь 30 %. В случае неудачи вам вернут только 250 000 долларов от вложенного миллиона, поскольку именно такая сумма была зарезервирована для вывода нового средства на рынок (тестирование, маркетинг и т. п.). Даже если исследователи добьются успеха, существует лишь 60-процентная вероятность того, что Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США одобрит это чудодейственное средство для медицинского применения. Но даже в том случае, если средство не только окажется эффективным, но и будет признано как безопасное для человека, существует 10-процентная вероятность того, что кто-либо из конкурентов предложит примерно в то же время еще более эффективный препарат, что лишит вас каких-либо надежд на получение прибыли. Но если удача будет во всем вам сопутствовать (ваше средство против облысения окажется эффективным и безопасным для человека, а ваши конкуренты не предложат ничего лучшего), оптимальная оценка доходности инвестиций составит 25 миллионов долларов.

Итак, имеет ли смысл вкладывать один миллион долларов в этот исследовательский проект?

Информация, которой вы располагаете, кажется весьма запутанной. Потенциальный доход выглядит довольно внушительно – в 25 раз больше вложенного капитала, – но и количество возможных ловушек велико. Эту информацию можно представить в виде дерева решений, которое – если вероятности, связанные с каждым исходом, соответствуют действительности, – даст вам вероятностную оценку того, как вам следует поступить. На дереве решений отображается каждый источник неопределенности, а также вероятности, связанные со всеми возможными исходами. Конец дерева указывает все возможные доходы, а также вероятность получения каждого из них. Если каждый такой доход умножить на весовой коэффициент, который равняется вероятности соответствующего дохода, и просуммировать все возможности, то мы получим математическое ожидание данной инвестиционной возможности. Как обычно, схематическое изображение способствует лучшему пониманию.

Эта конкретная возможность имеет привлекательное математическое ожидание. Величина ожидаемого дохода, полученная в результате суммирования всех возможных доходов с учетом их весовых коэффициентов, равняется 4,225 миллионов долларов. Тем не менее решение сделать такую инвестицию в исследовательский проект может оказаться не самым мудрым, если речь идет о вложении денег, накопленных вами на обучение детей в колледже. Дерево решений позволяет вам узнать, что ваш ожидаемый доход существенно выше суммы, которую вам предлагается инвестировать в данный проект. С другой стороны, наиболее вероятный исход – что исследователям не удастся изобрести новое средство от облысения и вам вернут лишь 250 000 долларов. Ваша готовность к такой инвестиции может зависеть от вашей склонности к риску. Из закона больших чисел следует, что любая инвестиционная фирма или богатый человек вроде Уоррена Баффета должны выискивать сотни возможностей наподобие этой, с неопределенными исходами, но привлекательными величинами ожидаемой прибыли. Некоторые из них сработают; большинство наверняка нет. В среднем такие инвесторы заработают немало – точно так же как страховая компания или казино. Если величина ожидаемого дохода кажется вам привлекательной, то желательно, чтобы количество попыток было как можно большим.

Аналогичный базовый процесс можно использовать для объяснения явления, которое на первый взгляд противоречит здравому смыслу. Иногда нет смысла проводить обследование всего населения с целью выявления какого-либо редкого, но серьезного заболевания, такого, скажем, как СПИД. Допустим, тестирование на какое-то редкое заболевание отличается высокой степенью точности. Предположим, что эта болезнь поражает одного из каждых 100 000 взрослых, а точность ее диагностирования составляет 99,9999 %. Тест никогда не дает ложного отрицательного результата (то есть не пропускает человека, страдающего таким заболеванием); однако примерно в одном из 10 000 тестов, проведенных на здоровом человеке, будет зафиксирован ложный положительный результат (то есть тест укажет на наличие у человека данного заболевания, хотя на самом деле этот человек здоров). Парадоксальная особенность здесь состоит в том, что несмотря на впечатляющую точность теста,

<< | >>
Источник: Чарльз Уилан. Голая статистика. Самая интересная книга о самой скучной науке. 2016

Еще по теме с высокой степенью вероятности или с менее высокой.:

  1. Соответственно, если инвестировать в компании, работающие в сфере энергетики, а также в сфере добычи и обработки таких ресурсов, как нефть, газ, можно с высокой вероятностью рассчитывать на то, что условия для бизнеса в этой сфере на ближайшие 10 лет выглядят весьма благополучно, значит, и доходность таких инвестиций может быть достаточно высокой.
  2. высокая степень адаптации, а также управляемость и мобильность
  3. Глава 12 Позиционирование трендов и профили высокой вероятности
  4. ПОТЕНЦИАЛЬНО ПРИБЫЛЬНЫЕ ВИДЫ ДЕЯТЕЛЬНОСТИ, С ВЫСОКОЙ ВЕРОЯТНОСТЬЮ ОРИЕНТИРОВАННЫЕ НА РЫНОК БОГАТЫХ
  5. Ставки предвидения в бизнесе весьма высоки: от успешного прогноза зависят не только высокие прибыли, но и само существование затеянного дела.
  6. Отдельные счета учета, в которых чаще всего появляются преднамеренные искажения вследствие высокой вероятности их использования для совершения злоупотреблений.
  7. Рис. 23. Виды дивергенции Дивергенции между ценами и индикаторами дают одни из самых сильных сигналов технического анализа. Дивергенции создаются различиями высоты или глубины экстремумов цен и индикаторов. Дивергенции «медведей» класса А: цены поднимаются к новому максимуму, а индикатор даёт менее высокий максимум, чем предыдущий. Это самый сильный сигнал к продаже. Дивергенции «быков» класса А: цены опускаются к новому минимуму, а индикатор даёт менее глубокий минимум, чем предыдущий. Это самы
  8. 1. Всегда покупайте опционы колл или пут в деньгах, потому что дельта у них относительно высокая.
  9. Рис. 38. Индекс выплат Херрика HPI отслеживает поступление денег на рынок и их отток измеряя изменения цен, объёма и открытого интереса. HPI даёт лучшие сигналы тогда, когда его динамика расходится с движением цен. HPI указал на вершины рынка в августе и сентябре тем, что дал менее высокие пики при подъёмах цен к новым максимумам. HPI предсказал дно в октябре и ноябре, прекратив падать, и остановившись в менее глубоких минимумах при падении цен на медь к новым минимальным значениям. Дивергенция
  10. Валюта с низкой процентной ставкой за определенный период котируется на условиях форвард к валюте с высокой процентной ставкой за тот же период с премией.Валюта с высокой процентной ставкой за определенный период котируется на условиях форвард к валюте с низкой процентной ставкой за тот же период со скидкой или дисконтом.
  11. Рис. 33. Объем Чтобы интерпретировать данные об объёме, вы должны сопоставить их с изменениями цен: А. Рост объёма во время подъёма предвещает ещё более высокие цены. Покупайте. В. Цены прыгнули при объёме более, чем в два раза превышающем средний. Это знак того, что тренд может измениться. Ужесточите остановки по открытым позициям. С. Цены также высоки, как и в предыдущий раз, но объем значительно меньше. Эта дивергенция «медведей» указывает на вершину. Продавайте и начинайте играть на понижени
  12. Предупреждающая Формация Высокая Мачта
  13. Постоянная высокая конъюнктура
  14. Нормотворческие полномочия Высокого суда
  15. Акции с высоким риском
  16. Товары высоких технологий
  17. Развитие высоких технологий в России
  18. КАК ПОДДЕРЖИВАТЬ СВОЮ МОТИВАЦИЮ НА ВЫСОКОМ УРОВНЕ
  19. Монопольно высокая цена