Политик B (противник популизма):

«Наша экономика демонстрирует заметный рост: в прошлом году доходы семидесяти процентов американцев выросли».

Из этих утверждений напрашивается вывод, что самой благополучной можно считать экономику крупнейших штатов: Нью-Йорка, Калифорнии, Техаса, Иллинойса и т.

п. Тридцатью штатами со снижающимся средним доходом, по-видимому, будут те, которые гораздо меньше по площади: Вермонт, Северная Дакота, Род-Айленд и т. п. Учитывая диспропорцию в величине штатов, вполне возможно, что экономическая ситуация во многих из них ухудшилась, тогда как доходы большинства американцев выросли. Главное – обратить внимание на единицу анализа. Кого именно (или что именно) мы пытаемся описать, и отличается ли этот «кто-то» (или это «что-то») от того, что пытается описать кто-то другой?

Хотя приведенные выше примеры относятся к категории гипотетических, ключевым здесь является отнюдь не гипотетический статистический вопрос: как влияет глобализация на неравенство доходов в мире в целом – в лучшую или в худшую сторону? По одной теории, глобализация лишь усугубляет существующее неравенство доходов: более богатые страны (если богатство измерять величиной ВВП [валовой внутренний продукт] на душу населения) демонстрировали более высокие темпы роста в период с 1980 по 2000 год, чем более бедные страны{13}. Богатые страны становились еще богаче; из этого следовало, что торговля, аутсорсинг, зарубежные инвестиции и прочие компоненты глобализации – не что иное как инструменты, с помощью которых развитые страны укрепляют свою экономическую гегемонию. Короче говоря, долой глобализацию!

Но не будем торопиться с выводами. Те же данные можно (и нужно) интерпретировать совершенно по-другому, если изменить единицу анализа. Нас интересуют не бедные страны, а бедные люди. А самый высокий процент бедных людей в мире приходится на Китай и Индию. Китай и Индия – огромные страны (население каждой из них превышает миллиард человек); и обе были относительно бедными в 1980 году. В течение нескольких последних десятилетий они развивались ускоренными темпами, что в немалой степени обусловливалось их возрастающей экономической интеграцией с остальным миром. The Economist описывает их как «быстрых глобализаторов». С учетом того, что наша цель – искоренить человеческую бедность, при анализе влияния глобализации на бедность нет смысла присваивать Китаю (с населением 1,3 миллиарда человек) такой же вес, как Маврикию (с населением 1,3 миллиона человек).

Единицей анализа должны быть люди, а не страны. На самом деле то, что произошло в период с 1980 по 2000 год, во многом похоже на приведенный мною выше гипотетический пример со школами. Большая часть бедного населения планеты проживает в двух гигантских странах, которые в настоящее время бурно развиваются, все больше и больше интегрируясь в мировую экономику. Надлежащим образом выполненный анализ приводит нас к совершенно другому выводу относительно последствий глобализации для людей со скромными достатками. Как указывают авторы статьи в журнале The Economist, «если анализировать положение людей, а не стран, то глобальное неравенство стремительно сокращается».

Телекоммуникационные компании AT&T и Verizon недавно развязали «рекламную войну», в которой используется рассматриваемая нами двусмысленность в отношении того, что именно описывается. Обе компании предоставляют услуги сотовой связи. Одной из главных проблем для большинства пользователей мобильных телефонов является качество связи. Таким образом, кажется вполне логичным, чтобы в своих рекламных кампаниях оба мобильных оператора сравнивали масштаб и качество своих сетей связи. В то время как потребители просто заинтересованы в достойном качественном сервисе, AT&T и Verizon применяют разные показатели для оценивания этого несколько расплывчатого желания. Verizon запустила агрессивную рекламную кампанию, расхваливающую географическое покрытие, обеспечиваемое ее сетью связи: возможно, вы вспомнили географические карты Соединенных Штатов, показывающие, какую часть страны охватывает сеть связи этого оператора по сравнению с относительно скромным географическим покрытием, обеспечиваемым AT&T. Единицей анализа, выбранной Verizon, является площадь охватываемой ею территории, поскольку Verizon весьма преуспела именно в этом отношении.

AT&T ответила запуском рекламной кампании с другой единицей анализа. Билборды AT&T гласят, что «AT&T предоставляет услуги 97 % американцев». Обратите внимание на использование слова «американцы», а не «Америка». AT&T сосредоточила внимание на том обстоятельстве, что большинство людей не проживает в сельскохозяйственном штате Монтана или в пустыне Аризоны. Поскольку население неравномерно распределено по территории США, ключом к предоставлению качественных услуг сотовой связи (как подразумевалось в данной рекламной кампании) является ее наличие в местах, где фактически проживают и работают потенциальные пользователи, а вовсе не обязательно там, где они могут проводить пару недель во время отпуска. Однако как человек, часто бывающий в сельскохозяйственном штате Нью-Гэмпшир, я отдаю свои симпатии компании Verizon.

Наши старые знакомые, среднее значение и медиана, также могут использоваться для всевозможных неблаговидных целей. Как вы, наверное, помните из материала предыдущей главы, среднее значение и медиана – это показатели «середины» того или иного распределения, или его «центральная тенденция». Среднее значение – это просто арифметическое среднее: сумма наблюдений, поделенная на их количество (среднее значение чисел 3, 4, 5, 6 и 102 равняется 24).

Медиана представляет собой среднюю точку распределения: половина наблюдений расположена над ней, а другая половина – под ней (медиана чисел 3, 4, 5, 6 и 102 составляет 5). Итак, умный читатель, наверное, обратил внимание на существенную разницу между 24 и 5. Если бы по какой-то причине я захотел описать эту группу чисел так, чтобы она показалась более внушительной, то отдал бы предпочтение среднему значению. Если же мне захотелось бы, чтобы она выглядела меньшей, то воспользовался бы медианой.

А теперь давайте посмотрим, как эти манипуляции осуществляются на практике. Рассмотрим снижение налогов, рекламируемое администрацией экс-президента Джорджа Буша как благо для большинства американских семей. Продвигая этот план, администрация Буша указывала, что для 92 миллионов американцев налоги в среднем уменьшатся на 1000 долларов (если быть более точным, то на 1083 доллара). Но является ли такая величина точной? Согласно The New York Times, «Эти данные не лгут, просто кое о чем умалчивают».

Снизилось бы налоговое бремя для 92 миллионов американцев? Да.

Уменьшились бы налоги для большинства из них примерно на 1000 долларов? Нет. Снижение налога, подсчитанное как медиана, оказалось бы меньше 100 долларов.

Сокращение налогов для относительно малого числа очень богатых людей оказалось бы очень существенным; именно эти большие числа искажают среднее значение, создавая иллюзию значительного снижения налогового бремени. В действительности величина такого снижения для большинства американцев оказалась бы гораздо меньшей. Медиана нечувствительна к наблюдениям-«отщепенцам» и в данном случае стала бы более точным описанием того, как планируемые налоговые послабления сказались бы на типичной американской семье.

Разумеется, медиана также способна вводить в заблуждение – именно потому, что нечувствительна к наблюдениям-«отщепенцам». Допустим, у вас обнаружили смертельную болезнь. Утешением для вас служит тот факт, что недавно появилось новое лекарство, излечивающее это заболевание. Плохо лишь то, что оно чрезвычайно дорогое и, кроме того, имеет множество опасных побочных эффектов. «Но поможет ли мне это лекарство?» – спрашиваете вы у врача. И он сообщает вам, что оно повышает медианную ожидаемую продолжительность жизни на… две недели. Подобная новость вряд ли добавит вам оптимизма (учитывая расходы на покупку лекарства и возможные побочные эффекты). К тому же ваша страховая компания отказывается оплачивать лечение по причине очень незначительного повышения медианной ожидаемой продолжительности жизни людей, страдающих вашим заболеванием.

Однако медиана вполне может оказаться весьма обманчивой статистикой в данном случае. Допустим, новое лекарство не помогает многим пациентам, однако немалое их число, скажем 30 или 40 %, излечивается полностью. Этот процент успеха никак не сказывается на медиане (хотя средняя ожидаемая продолжительность жизни людей, принимающих новое лекарство, выглядела бы весьма впечатляюще). В этом случае наблюдения-«отщепенцы» – те, кому помогло новое лекарство, – должны сыграть важную роль в принятии вами окончательного решения. И это не просто некая гипотетическая ситуация. У Стефена Гоулда – ученого-биолога, занимающегося проблемами эволюции – была диагностирована форма рака, при которой медианная ожидаемая продолжительность жизни составляла восемь месяцев; спустя двадцать лет он умер от другого вида ракового заболевания, никак не связанного с предыдущим{14}. Гоулд впоследствии написал знаменитую статью под названием The Median Isn’t the Message («Медиана – это не приговор»), в которой утверждал, что именно его научные познания в области статистики уберегли его от ошибочного заключения, будто он непременно умрет через восемь месяцев. Определение медианы говорит нам, что половина пациентов проживет по меньшей мере восемь месяцев – и, возможно, гораздо дольше этого срока. Распределение смертности «скошено вправо», а это – нечто гораздо большее, чем просто техническая подробность, когда речь идет о смертельной болезни{15}.

В данном примере определяющая характеристика медианы – то есть то, что она не присваивает наблюдениям весовые коэффициенты исходя из того, насколько они отдалены от средней точки, а лишь оценивает их в зависимости от того, где (выше или ниже) они расположены, – оказывается ее слабым местом. В отличие от медианы среднее значение зависит от разброса наблюдений. С точки зрения точности, ответ на вопрос «медиана или среднее значение» будет обусловлен тем, какое влияние оказывают наблюдения-«отщепенцы» в рассматриваемом нами распределении на описываемое явление: искажают его или, напротив, играют важную роль в уяснении нами его сути. (И снова здравое суждение берет верх над «голой» математикой.) Разумеется, ничто не скажет вам наверняка, чему именно следует отдать предпочтение – медиане или среднему значению. В любом комплексном статистическом анализе, скорее всего, будут задействованы оба показателя. Когда вы встречаете ссылку лишь на медиану или среднее значение, это наверняка было сделано из соображений краткости, хотя может указывать и на то, что кому-то очень хочется с помощью статистики «убедить» вас в чем-то.

Те из вас, кто достиг определенного возраста, возможно, помнят приведенный ниже обмен репликами между персонажами фильма Caddyshack, в роли которых выступают Чеви Чейз и Тед Найт. Эти двое встречаются в раздевалке после игры в гольф.

<< | >>
Источник: Чарльз Уилан. Голая статистика. Самая интересная книга о самой скучной науке. 2016

Еще по теме Политик B (противник популизма)::

  1. 17. ЛАТИНСКАЯ АМЕРИКА И ПОПУЛИЗМ
  2. Забота о противнике
  3. Изучите противника
  4. Миссия, обращенная к миру противника
  5. Противник не дремлет
  6. Не пытайтесь спасти противника или отношения
  7. Коммуникации между вероятными противниками
  8. Противник появляется на ринге
  9. Противники трудовой теории ценности.
  10. деидеологизацию и запрет на наличие государственнойидеологии следует рассматривать как инструменты разоружения противника
  11. Фундаментальный анализ: противник или компаньон?
  12. Приемы ослабления внешних противников в Средние века и ранее. Новое время
  13. Урок 4. Поставщики должны стать партнерами, а не противниками, которых можно обвинить во всех неудачах
  14. Чем меньше ресурсов вы израсходуете на отраже­ние атак конкурентов, тем больше средств вы можете использовать на стимулирование потре­бителей. Уклонение от встреч с превосходящими силами противника